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Polarization matrix and geometric phase
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~Received 21 August 1996; revised manuscript received 16 December 1996!

Following Jones calculus, we have evaluated the polarization matrix of an optical system whose two ortho-
normal eigenvectors are represented by two-component spinors of spherical harmonics. In addition, we have
studied the geometric phase of polarized light whose plane of polarization is rotated over a closed path by a
rotator.@S1063-651X~97!08707-2#

PACS number~s!: 42.25.Ja
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I. INTRODUCTION

The cyclic variation of external parameter often leads t
net evolution involving a phase associated with the geom
of the path traversed in the parameter space. For noncy
evolution, this phase can be written as the function of the
points of the path traversed. This is the well-known geom
ric phase abound in many areas of physics. First, it was
covered in optics in the 1930s@1#. Later, in the mid-1950s
Pancharatnam@2# introduced the idea of such a phase in t
study of the classical theory of polarized light on the Po
carésphere. After the discovery of Berry’s geometric pha
@3# in 1984, Nityananda and Ramseshan pointed out its
semblance to the Pancharatnam phase@4#. Later on, Berry
discussed the connection of his phase@5# with that of Pan-
charatnam, considering photons as two-component spin
Several experiments have been performed to demonstrat
geometric phase~GP! in optics @6#, in which Bhandari and
Samuel@7# reported first a direct experimental observation
the Pancharatnam-Berry phase in the nonunitary evolu
on the Poincare´ sphere by means of a laser interferomete

The study of optical polarization has been enriched by
valuable works of Bhandari@8# as well as Simon and Muku
nda@9# and also Simon, Mukunda, and Sudarshan@10# from
group-theoretical and geometrical aspects. Recently, we h
found a complete quantum illustration of the GP in opt
from the work of Klyshko@11#.

In light of Berry’s work, we have recently calculated rel
tivistically @12# the Berry phase of plane-polarized light ov
a triangle on the Poincare´ sphere whose vertices expre
three different nonorthogonal polarizations, respectively
has been assumed there that as light passes through a
isotropic medium the photon fixes its helicity. If positiv
helicity corresponds to right circular polarization, then neg
tive helicity belongs to left circular polarization. In analog
with a spin system, we may suggest that a photon wit
fixed helicity can be viewed as if adirection vector ym is
attached at the space-time pointxm in Minkowski space, so
that we can write the coordinate in the complexified spa
time as zm5xm1 iym . Here the additional condition is
uymu250, which ensures the masslessness of photon. In
ducing the spinorial variableu( ū), ~through ym! in the
space-time geometry, we finally express the polarized pho
as a two-component spinor of spherical harmonics.

In this paper, using Jones calculus, we shall construct
polarization matrix of the optical system in the relativis
561063-651X/97/56~1!/1129~6!/$10.00
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framework. From this formulation, we shall also aim
studying the geometric phase of polarized light~circular, lin-
ear! whose plane of polarization suffers a rotation over
closed path by a rotator.

II. SPINORIAL REPRESENTATION
OF POLARIZED PHOTONS

A light beam is said to be polarized@13# whenever it is
transmitted through a certain crystalline medium that allo
electrical anisotropy. This indicates that the photon in
polarized beam fixes its helicity whose direction chang
with the change of plane of polarization. In an anisotrop
space a particle having a fixed helicity can be viewed as
direction vector is attached at the space-time point@14#.
From relativistic point of view, ifxm is the mean position of
the particle andym indicates the direction vector, then we ca
consider the resultant coordinate in the complexified spac
zm5xm1 iym . This extended structure indicates that the a
quirance of mass and the masslessness condition is ach
when we haveuymu250. It can be shown that the two oppo
site orientations of the direction vector represent twointernal
helicities corresponding to fermions and antifermions.
view of this, we can formulate theinternal helicity in terms
of two-component spinorial variablesu( ū).

Indeed, in the complexified space-time, we can write
chiral coordinate as

zm5xm1~ i /2!lm
aua , ~1!

where we have taken

ym5~1/2!lm
aua , ~2!

ua (a51,2) being a two-component spinor. If we now r
place the chiral coordinates by their matrix representatio

zAA85xAA81~ i /2!la
AA8ua, ~3!

where

xAA85
1

&
F x02x1

x22 ix3
x21 ix3

x01x1 G , ~4!

with

la
AA8PSL~2,c!,
1129 © 1997 The American Physical Society
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1130 56DIPTI BANERJEE
we find the helicity operator

Shel52la
AA8uap̄ApA8 , ~5!

which we identify as theinternal helicityand corresponds to
the fermion number when the two opposite orientations
internal helicitiesrepresent particle and antiparticle. It ma
be noticed that we have taken the matrix representatio
pm ~conjugate toxm in the complex coordinatezm5xm

1 iym! as pAA85p̄ApA8, implying pm
250. So the particle

will have its mass due to the nonvanishing character of
quantityym

2 . It is observed that the complex conjugate of t
chiral coordinate~1! will give rise to a massive particle with
oppositeinternal helicitycorresponding to an antifermion. I
the null plane whereym

250, we can write the chiral coordi
nate for massless spinor as

zAA85xAA81
i

2
ūAuA8, ~6!

where the coordinateym is replaced byyAA85(1/2)ūAuA8. In
this case the helicity operator is given by

S52 ūAuA8p̄ApA852 «̄«, ~7!

where «5 iuA8pA and «̄52 iuApA8 . The corresponding
twistor equation describes a massless spinor field. In cas
massive spinor, we can define a planeD2, where, for coor-
dinatezm5xm1 iym , ym belongs to the interior of forward
lightcone (y@0) and as such represents the upper half-pl
with the condition detyAA8.0 and 1

2Try
AA8.0. The lower

half-planeD1 is given by the set of all coordinateszm with
ym in the interior of the backward lightcone (y!0). The
map z→z* sends the upper half-plane to the lower ha
plane. The spaceM of null planes (detyAA850) is the Shilov
boundary so that a function holomorphic inD2(D1) is de-
termined by its boundary values. Thus, if we consider t
any function f(z)5f(x)1 if(y) is holomorphic in the
whole domain, the helicity1 1

2(2
1
2! in the null plane may be

taken to be the limiting value of theinternal helicity in the
upper~lower! half-plane. Thus massless spinor exists in t
plane.

To explain our problem in terms of spinorial variables, t
photon with a fixed helicity in the polarized light can b
viewed as a massless spinor with helicity11/2 or21/2 on
the Shilov boundary. If a photon with a massless11 helil-
city state is associated with a fermion having helic
11/2, then the helicity21 can be associated with an an
fermion with helicity21/2.

It may be noted that the wave functionf(zm)5f(xm)
1 if(ym) can be treated to describe a particle moving in
external space-time having the coordinatexm with an at-
tacheddirection vector ym . Thus the wave function shoul
take into account the polar coordinatesr , u, f along with the
anglex which specify the rotational orientation arounddi-
rection vector ym . For an extended particleu, f, andx just
represent the three Euler angles@15#.

In a three-dimensional~3D! anisotropic space, we ca
consider an axisymmetric system where the anisotrop
introduced along a particular direction. It is to be noted t
f
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in this anisotropic space, the components of the linear m
mentum satisfy a commutation relation of the form

@pi ,pj #5 ime i jk
xk

r 3
. ~8!

In such a space, the conserved angular momentumJ is rep-
resented by

JW5rW3pW 2mrW. ~9!

It follows that J25L22m2 instead ofL2 is a conserved
quantity. In general,m, which is the measure of the aniso
ropy, is given by the eigenvalue of the operatorid/dx and
can take the valuesm50, 61/2, 61,... . The spherical har
monics incorporating the termm have been extensively stud
ied by Fiertz@16# and Hurtz@17#. Following them, we write

Yl
m,m5~11x!2~m2m!/2~12x!2~m1m!/2

dl2m

dl2mx

3@~11x! l2m~12x! l1m#eimfe2 imx, ~10!

with x5cosu.
In the anisotropic space a fermion with helicity11/2 can

be treated as a scalar particle moving withl51/2 with l z5
11/2. The specification of thel z value for the particle and
antiparticle states then depicts it as a chiral spinor. From
relation ~10!, we can construct the spherical harmonics
l51/2 andm561/2, m561/2. They are given in terms o
the components~u,f,x! as follows:

Y1/2
1/2,1/25sin

u

2
ei ~f2x!/2,

Y1/2
21/2,1/25cos

u

2
e2 i ~f1x!/2,

Y1/2
1/2,21/25cos

u

2
ei ~f1x!/2,

Y1/2
21/2,21/25sin

u

2
e2 i ~f2x!/2. ~11!

These represent spherical harmonics for half-orbital ang
momentum in an anisotropic space, and it is to be noted
from these spherical harmonics we can construct the pro
wave functionsY1

1, Y1
21, Y1

0 which we have used to repre
sent the polarization matrix in our previous work@12#. It has
been shown in@14# that the two-component spinor and i
conjugate state can be formed from the above spherical
monics.

In the next section we shall use the above spherical h
monics to represent the polarized photon and also s
evaluate the polarization matrixM of the optical system.

III. MATRIX FORMULATION OF THE OPTICAL
SYSTEM AND THE GEOMETRIC PHASE

The passage of plane-polarized light through a partial
larizer or retardation plate having its plane of polarizati
parallel to either of the principal axes suffers no change
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56 1131POLARIZATION MATRIX AND GEOMETRIC PHASE
the state of polarization. Similarly, both types of circular
polarized light acquire no change in their state of polari
tion in passing through a rotator. This property of light wi
respect to the optical element was presented in a 232 matrix
method by Jones@18#. The matrixMn of the optical system
of n components having eigenvectors« i satisfies the condi-
tion

Mn« i5die i , ~12!

wheredi is the constant known as eigenvalue correspond
to the eigenvectors« i . For one component optical eleme
the matrix becomes

M5Sm1

m3

m4

m2
D .

Jones has pointed out that the matrixM of the optical
system is then uniquely determined by the relation

M5TDT21, ~13!

M5D21S d1a1b22d2a2b1
~d12d2!b1b2

2~d12d2!a1a2
d2a1b22d1a2b1

D , ~14!

where

T5S a1b1 a2
b2

D , ~15!

T215D21S b2
2b1

2a2
a1

D , ~16!

having

D5a1b22a2b1 ,

D5S d1 0

0 d2
D ,

and with no loss in generality the orthonormal eigenvect
are

«15S a1b1D , ~17!

«25S 2b1*

a1*
D . ~18!

The introduction of a rotator along the path of the lig
beam transforms the polarization matrixM to M 8 by the
relation

M 85S~v!MS~2v!, ~19!

whereS(v) is the rotation matrix@19#,

S~v!5S cosvsinv
2sinv
cosv D . ~20!
-

g

s

This property of rotation of the plane of polarization over
closed path, will be utilized to find out the geometric pha
of polarized light which will be the eigenvector of our pola
ization matrix.

Using the above calculus of Jones, we want to constr
in the relativistic framework the polarization matrix, consi
ering the photons as two-component spinors of spherical
monics. The similarity between the behavior of polariz
photon and spinor is followed by the early work of Pa
charatnam@2# where the phase developed by the cyc
change of polarization on the Poincare´ sphere becomes

^AuA8&5exp~2 iVABC/2!.

It indicates that for a solid angle 2p, the phase shift be-
tweenuA& and uA8& is p, which indicates the reverse of th
field. Since we are taking here a fixed polarization of a ph
ton, we can consider it as represented by a fermion wit
fixed helicity, though fermions change sign in a 2p rotation
and photons do not. That means we can consider the ph
with helicity 11 as a fermion with helicity11/2 and, on the
other hand, helicity21 can be identified as an antifermio
with helicity 21/2. In fact, in the discussion of the previou
section, this helicity plays the key role. It is visualized by t
termym in the coordinatezm5xm1 iym of a polarized photon
or in zm5xm2 iym of opposite polarization, where massles
ness is ensured by the conditionuymu250. To have an
equivalent representation in polar coordinates one needs
anglesu, f, andx to represent the field function in terms o
spherical harmonicsYl

m,m . In view of this, we want to rep-
resent the polarized photon as

«15S Y1/2
1/2,1/2

Y1/2
1/2,21/2D 5S sin

u

2
ei ~f2x!/2

cos
u

2
ei ~f1x!/2

D , ~21!

«25S 2Y1/2
21/2,1/2

Y1/2
21/2,21/2D 5S 2cos

u

2
e2 i ~f1x!/2

sin
u

2
e2 i ~f2x!/2

D . ~22!

These are the orthonormal eigenvectors of an optical sys
M . Here a chiral photon is represented relativistically
two-component spinors which can be split as follows:

S c1

c2
D5S c1

0 D1S 0
c2

D ,
where the first and second terms represent the eigensta
right circular polarization and left circular polarization, re
spectively.

With the help of Jones calculus, we want to construct
matrix of the optical system by considering the eigenva
matrix as follows:

D5S d10 0
d2

D5T21MT5S 1/20 0
21/2D , ~23!
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1132 56DIPTI BANERJEE
which identifies the two helicities of polarized photons. U
ing the above equations, we can calculate the required p
ization matrix as

M5TDT215S sin
u

2
ei ~f2x!/2

cos
u

2
ei ~f1x!/2

2cos
u

2
e2 i ~f1x!/2

sin
u

2
e2 i ~f2x!/2

D
3S 1/20 0

21/2D

3S sin
u

2
e2 i ~f2x!/2

2cos
u

2
ei ~f1x!/2

cos
u

2
e2 i ~f1x!/2

sin
u

2
ei ~f2x!/2

D ,

M5
1

2 S 2cosu
sinueix

sinue2 ix

cosu D . ~24!

It can be verified that the above polarization matrix satis

M«151/2«1 , ~25!

M«2521/2«2 , ~26!

where eigenvalues reflect the helicity of polarized photon
Rearranging the terms of Eq.~24!, the polarization matrix

M can have the representation

M52
1

2 S 10 0
1D

1S cos2~u/2!

sin~u/2!cos~u/2!eix
sin~u/2!cos~u/2!e2 ix

sin2~u/2! D ,
~27!

where we can identify the first term as the coherency ma
of natural radiation and the other term defines the casca
optical system where a compensator is followed by a po
izer @20#.

We now proceed to find the effect of a rotator introduc
in the optical system such a way that it rotate the plane
polarization by an anglef/2 about thez axis. Then Eq.~19!
helps us to write

M 85S~f/2!MS~2f/2!, ~28!

which can be evaluated using Eq.~24!,

M 85
1

2 S cos~f/2!

sin~f/2!

2sin~f/2!

cos~f/2! D S 2cosu
sinueix

sinue2 ix

cosu D
3S cos~f/2!

2sin~f/2!

sin~f/2!

cos~f/2! D5
1

2 SM118

M218

M128

M228
D . ~29!

It has been found after calculation that
-
r-

s

.

ix
ed
r-

f

M118 52cosu cosf2sinf sin u cosx,

M128 5sinu cosf cosx2sinf cosu2 i sinu sinx,

M218 5sinu cosf cosx2sinf cosu1 i sinu sinx,

M228 5sinu sinf cosx1cosu cosf. ~30!

It seems that the geometrical surface developed by
polarization matrixM 8 is parametrized by three variablesu,
f, andx known as Euler angles. These type of single-gad
matricesM 8 belong to the SU~2! group. They have generate
particular interest in the polarization optics as studied
Simon and Mukunda@9# as well as others. The usual pola
ization matrix (232) developed by the parametersu andf
lies on the Poincare´ sphereS2, which is the spatial represen
tation of the Mullar matrix representing the operation of o
tical activity inO3 . Thus matrixM 8 represented by Eq.~31!
will belong to the extended Poincare´ sphere where the addi
tional parameterx represents the angle which measures
anisotropym through the relationm5 i d/dx. Our previous
discussions~Sec. II! suggest that this variation of anglex is
also associated with the change of direction of helicity of
polarized photon. It can be realized from Eq.~9! that m as
well asx is associated with a change of angular momentu
We can thus add here that a change of polarization of ligh
in connection with the change of anglex which is associated
with a transfer of angular momentum between the opti
system and the incident light. This idea supports the anal
given by Tiwari @21#.

The change of polarization matrix fromM to M 8 will
result in the emergent light differing from the initial state a
it will satisfy in the quantum-mechanical framework the r
lation

uc f&5M 8uc i&. ~31!

As the plane of polarization of the initial quantum
mechanical stateuc i& ~two-component spinors! is made to
rotate over a closed path, then apart from the dynam
phase there may appear the geometric phase of Berry. W
this idea, the total phase change through the parallel tra
port of the polarization plane over a closed path becom
@22#

^c f uc i&5ei ~gd1gc!. ~32!

Heregd is the dynamical phase andgc is the nontrivial phase
associated with the geometry of the path. This celebra
geometrical phasegc52Im r^nudn& originates from the
eigenstatesun& which gives rise the curvature two-form.

To find the geometrical phase in a most simple and g
eral way, we have chosen a pointB on the closed path
which is developed by the rotator of rotational anglef/2 at
fixed u.

Let us first imagine the passage of circularly polariz
light through a rotator. Then the polarization matrix and t
state will belong to either of the two poles. It can be eas
realized that rotation over a closed path will not trace a
closed curve except the pole point. Yet in connection w
the physical rotation of the anglef/2, we have the following
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state and the matrices representing the coordinates of
pointsA(0,0) andB(0,f) on the upper pole atu50:

MA85
1

2 S 21
0

0
1D ~33!

and

MB85
1

2 S cosf
2sinf

2sinf
cosf D , ~34!

with

ucA&5S 0
eix/2D , ~35!

and fromucA8 &5MA8MB8 ucA& we can find the total phase ove
the pathABA, which is

^cAucA8 &5
1

4
cosf. ~36!

In similar manner at the lower pole atu5p apart, the coor-
dinates ofA andB are~p,0! and~p,f!, for which the respec-
tive matrices are

MA85
1

2 S 10 0
21 D , ~37!

MB85
1

2 S cosfsinf
sinf

2cosf D , ~38!

having

ucA&5S e2 ix/2

0 D . ~39!
g,

e

la
se
o-
e

e
e

heThe required phase becomes

^cAucA8 &5
1

4
cosf. ~40!

It can be noted that the pathABA does not enclose an
area. The appearance of the geometric phase is possible
ing the cyclic evolution if there is curvature associated w
the closed path. Over an anglep, the phase 1/4 acquired b
both the left or right circularly polarized light 2p will be off
only the dynamical origin.

At the end, we shall consider the passage of linearly
larized light through a rotator rotated by an anglef/2. On an
equitorial circle the value of pointsA andB are, respectively,
(p/2,0) and (p/2,f). The corresponding matrices at tho
points and the initial states are

MA85
1

2 S 0
eix

e2 ix

0 D , ~41!

MB85
1

2 S 2sinf cosx
cosf cosx1 i sinx

cosf cosx2 i sinx
sinf cosx D ,

~42!

and

ucA&5
1

&
S e2 ix/2

eix/2 D . ~43!

The phase developed by incident polarized light after a ro
tion of anglef/2 becomes,
^cAuMA8MB8 ucA&5
1

8
~eix/2 e2 ix/2!S 0

eix
e2 ix

0 D S 2sinf cosx
cosf cosx1 i sinx

cosf cosx2 i sinx
sinf cosx D S ei ~2x!/2

eix/2 D . ~44!
rcu-
nd,
, an
i-

lly
in
ed
de-
e
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Through proper matrix multiplication and after simplifin
we can find the result

^c i uc f8&5
1

8
@cos2x~11cosf!2~12cosf!#. ~45!

Here our required geometric phase for linearly polariz
light will be identified as14 cos 2x, which is associated with
the extra variablex introduced for helicity of photon.

Our above results extends the idea of Jones@16#, where he
pointed out that a rotator does not change the state of po
ization of circularly polarized light, whereas the rever
thing happens for plane-polarized light. It implies that if r
tation over a closed path produces any change in the plan
polarization, the inclination of helicity~x! will change and
the developed phase will be of geometrical origin. This id
is visualized in our present work through the appearanc
d

r-

of

a
of

dynamical phase 1/4, for the passage of two opposite ci
larly polarized lights through the rotator. On the other ha
for the passage of plane-polarized light through a rotator
additional phase cos 2x appears which is of geometric or
gin.

IV. DISCUSSION

In the light of Jones calculus, we have mathematica
determined the polarization matrix of the optical system
the relativistic framework. We have chosen the polariz
photon as a two-component spinor where the helicity is
picted by the extra variablex. This causes us to parametriz
our resultant polarization matrix by three variablesu, f, and
x that lie on the extended Poincare´ sphere.

In fact, we have shown finally that circularly polarize
light possesses no geometrical phase~GP!, only a dynamical
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1134 56DIPTI BANERJEE
phase~DP! after passage through rotator, whereas passag
plane polarized light able to produce a GP as well as a
over the closed path. This study supports the idea of Jo
@17# where appearance of a GP ensures the change of p
of polarization over a closed path.

In this connection, recently Berry has shown that t
phase change for the light beam cycled by the twisted s
of N polarizersP is geometric, whereas for retardersR the
corresponding phase change becomes geometric1dynamic
.

se
of
P
es
ne

e
ck

@23#. These findings are consistent with our results as sho
here.
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