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Polarization matrix and geometric phase
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Following Jones calculus, we have evaluated the polarization matrix of an optical system whose two ortho-
normal eigenvectors are represented by two-component spinors of spherical harmonics. In addition, we have
studied the geometric phase of polarized light whose plane of polarization is rotated over a closed path by a
rotator.[S1063-651X97)08707-3

PACS numbds): 42.25.Ja

I. INTRODUCTION framework. From this formulation, we shall also aim at
studying the geometric phase of polarized ligtitcular, lin-
The cyclic variation of external parameter often leads to eea) whose plane of polarization suffers a rotation over a
net evolution involving a phase associated with the geometrglosed path by a rotator.
of the path traversed in the parameter space. For noncyclic
evolution, this phase can be written as the function of the end Il. SPINORIAL REPRESENTATION
points of the path traversed. This is the well-known geomet- OF POLARIZED PHOTONS
ric phase abound in many areas of physics. First, it was dis- ) ) ) ) o
covered in optics in the 193Q4]. Later, in the mid-1950s, A light beam is said to be polarized 3] whenever it is
Pancharatnarf2] introduced the idea of such a phase in thetransmltted t_hrough a certain c_rystalllne medium that allows
study of the classical theory of polarized light on the Poin-€l€ctrical anisotropy. This indicates that the photon in the
caresphere. After the discovery of Berry’s geometric phasePolarized beam fixes its helicity whose direction changes
[3] in 1984, Nityananda and Ramseshan pointed out its re%ith the change of plane of polarization. In an anisotropic
semblance to the Pancharatnam phiade Later on, Berry SPace a partlcle.havmg a fixed helicity can t_)e viewed as if a
discussed the connection of his ph4Sgwith that of Pan-  direction vectoris attached at the space-time pojri].
charatnam, considering photons as two-component spinorE"om relativistic point of view, ifx,, is the mean position of
Several experiments have been performed to demonstrate tHe€ particle ang,, indicates the direction vector, then we can
geometric phaséGP) in optics[6], in which Bhandari and consider the resultant coordinate in the complexified space as
Samue(7] reported first a direct experimental observation ofZu =X, 1Y, . This extended structure indicates that the ac-
the Pancharatnam-Berry phase in the nonunitary evolutioduirance of mass and the masslessness condition is achieved
on the Poincaraphere by means of a laser interferometer. When we havey ,|?=0. It can be shown that the two oppo-
The study of optical polarization has been enriched by théite orientations of the direction vector represent mternal
valuable works of BhandafB] as well as Simon and Muku- helicities corresponding to fermions and antifermions. In
nda[9] and also Simon, Mukunda, and Sudarsfiad| from  Vview of this, we can formulate thiaternal helicityin terms
group-theoretical and geometrical aspects. Recently, we hawd two-component spinorial variable 6).
found a complete quantum illustration of the GP in optics Indeed, in the complexified space-time, we can write the
from the work of Klyshko[11]. chiral coordinate as
In light of Berry’s work, we have recently calculated rela-
tivistically [12] the Berry phase of plane-polarized light over
a triangle on the Poincarsphere whose vertices eXpress v e we have taken
three different nonorthogonal polarizations, respectively. It
has been assumed there that as light passes through an an- y,=(12\,%6,, 2
isotropic medium the photon fixes its helicity. If positive
helicity corresponds to right circular polarization, then nega-g, (a=1,2) being a two-component spinor. If we now re-
tive helicity belongs to left circular polarization. In analogy place the chiral coordinates by their matrix representation
with a spin system, we may suggest that a photon with a
fixed helicity can be viewed as if direction vector y, is A =xAN 1 (1120 AN 69, )
attached at the space-time pok)f in Minkowski space, so
that we can write the coordinate in the complexified spacewhere

time as z,=x,+iy,. Here the additional condition is

z,=X,+(i/2)\,*0,, @

ly,.|?=0, which ensures the masslessness of photon. Intro- xAA'—i X0=xt x%+ix® @
ducing the spinorial variabled(6), (throughy,) in the va 1xX2—ix® x04xt |
space-time geometry, we finally express the polarized photon
as a two-component spinor of spherical harmonics. with
In this paper, using Jones calculus, we shall construct the
polarization matrix of the optical system in the relativistic A eSL2e),
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we find the helicity operator in this anisotropic space, the components of the linear mo-
mentum satisfy a commutation relation of the form
Shei= — N 0 TaTAL 5 )
_ X
which we identify as thénternal helicityand corresponds to [Pi.pj]=Teijc r3 (8)

the fermion number when the two opposite orientations of _
internal helicitiesrepresent particle and antiparticle. It may In such a space, the conserved angular momentusnrep-
be noticed that we have taken the matrix representation desented by
p, (conjugate tox, in the complex coordinate,=x,

+iy,) as p* =7 7A", implying p2=0. So the particle

will hz?lve 2|ts mass due to the nonvanishing chgracter of the; toi1ows that J2=12— 42 instead ofL2 is a conserved
quantityy:,. It is observed that the complex conjugate of thequantity. In generaly, which is the measure of the anisot-

chiral coordinatg1) will give rise to a massive particle with ropy, is given by the eigenvalue of the operaitéfox and
oppositeinternal helicitycorresponding to an antifermion. In ’

>

J=FXp— uF. 9)

2 _ ! "'l can take the valueg =0, +1/2, £1,... . The spherical har-
the null plane wherey, =0, we can write the chiral coordi- monjcs incorporating the term have been extensively stud-
nate for massless spinor as ied by Fiertz[16] and Hurtz[17]. Following them, we write

AN AR L R A dl-m
" =x +§ 0" 6", (6) Y= (1+x) " (M1 — x) (M2 T
’ A ' |- | i —i
where the coordinatg” is replaced by”A" = (1/2)¢*¢*". In X[(1+x)'"#(1-x)"#]eMPe1ex, (10

this case the helicity operator is given by With x= cos 6

— a— — In the anisotropic space a fermion with helicityl/2 can
— _ pApA — —
S== 00" mama = g2, (7} be treated as a scalar particle moving with1/2 with |,=
W — .o _ +1/2. The specification of thk, value for the particle and
where e=i6" my and e=—i¢"m . The corresponding aniiparticle states then depicts it as a chiral spinor. From the

twistor equation describes a massless spinor field. In case of|ation (10), we can construct the spherical harmonics for
massive spinor, we can define a pldde, where, for coor- | _1/2 andm= +1/2, u=*1/2. They are given in terms of

qmatezﬂ=xﬂ+iyu, Y. belongs to the interior of forward o componentsd,¢,y) as follows:
lightcone fy>0) and as such represents the upper half-plane
with the condition dey* >0 and iTry**">0. The lower
half-planeD * is given by the set of all coordinateg with

Y. in the interior of the backward lightconey0). The
map z—z* sends the upper half-plane to the lower half-

plane. The spach! of null planes (dey" =0) is the Shilov
boundary so that a function holomorphici (D) is de-
termined by its boundary values. Thus, if we consider that
any function ¢(z)= ¢(x)+i¢(y) is holomorphic in the
whole domain, the helicity- 3(— 3) in the null plane may be
taken to be the limiting value of thiaternal helicityin the 0
upper(lower) half-plane. Thus massless spinor exists in this Y12 Y2=sin > e (9-0f2, (13)
plane.

To explain our problem in terms of spinorial variables, theThese represent spherical harmonics for half-orbital angular
photon with a fixed helicity in the polarized light can be momentum in an anisotropic space, and it is to be noted that
viewed as a massless spinor with helicityl/2 or —1/2 on  from these spherical harmonics we can construct the product
the Shilov boundary. If a photon with a massless helil-  \yaye functionsy?, Y; %, Y9 which we have used to repre-
city state is associated with a fermion having helicity sent the polarization matrix in our previous wdd]. It has
+1/2, then the helicity-1 can be associated with an anti- peen shown iff14] that the two-component spinor and its

fermion with helicity —1/2. _ conjugate state can be formed from the above spherical har-
It may be noted that the wave functiap(z,)=¢(X,.)  monics.

+i¢(y,) can be treated to describe a particle moving in the |y the next section we shall use the above spherical har-
external space-time having the coordinate with an at-  monics to represent the polarized photon and also shall
tacheddirection vector ¥L . Thus the wave function should evaluate the po|arization matrM of the optica| System_

take into account the polar coordinatesy, ¢ along with the

angle x which specify the rotational orientation aroudd 1. MATRIX EORMULATION OFE THE OPTICAL

rection vector y,. For an extended particlé ¢, andy just SYSTEM AND THE GEOMETRIC PHASE
represent the three Euler angld$].

In a three-dimensiona(3D) anisotropic space, we can The passage of plane-polarized light through a partial po-
consider an axisymmetric system where the anisotropy iarizer or retardation plate having its plane of polarization
introduced along a particular direction. It is to be noted thatparallel to either of the principal axes suffers no change in

0 .
YY2lo= sin > gle—x12

6
Yl—/21/2,1/2: cosi e i(6+0)12

) o
Yol cos el (o+ni2
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the state of polarization. Similarly, both types of circularly This property of rotation of the plane of polarization over a
polarized light acquire no change in their state of polariza-closed path, will be utilized to find out the geometric phase
tion in passing through a rotator. This property of light with of polarized light which will be the eigenvector of our polar-

respect to the optical element was presented ix&@ 2natrix  ization matrix.

method by Jonegl8]. The matrixM" of the optical system Using the above calculus of Jones, we want to construct
of n components having eigenvectarssatisfies the condi- in the relativistic framework the polarization matrix, consid-
tion ering the photons as two-component spinors of spherical har-
monics. The similarity between the behavior of polarized
M";=d;€;, (120  photon and spinor is followed by the early work of Pan-

charatnam[2] where the phase developed by the cyclic
whered; is the constant known as eigenvalue correspondinghange of polarization on the Poincaghere becomes
to the eigenvectors;. For one component optical element
the matrix becomes (AJAY=exp( —iQapd2).

It indicates that for a solid angle72 the phase shift be-
tween|A) and|A’) is , which indicates the reverse of the
field. Since we are taking here a fixed polarization of a pho-
Jones has pointed out that the mathik of the optical  ton, we can consider it as represented by a fermion with a

m my
M = (
mz My

system is then uniquely determined by the relation fixed helicity, though fermions change sign in a Botation
- and photons do not. That means we can consider the photon
M=TDT -, (13 with helicity +1 as a fermion with helicity+- 1/2 and, on the

other hand, helicity-1 can be identified as an antifermion
with helicity —1/2. In fact, in the discussion of the previous
section, this helicity plays the key role. It is visualized by the
termy,, in the coordinate,,=x, +iy, of a polarized photon
where orinz,=x,—iy, of opposite polarization, where massless-
ness is ensured by the conditidy,|?=0. To have an

diaib,—dyazb,  —(dy—dy)aza,

M=A"1
(dy—d3y)bsb, dya;b,—diazh,

. (19

A @& equivalent representation in polar coordinates one needs the
T= b; by’ (19 anglesd, ¢, andy to represent the field function in terms of
spherical harmonic¥{™*. In view of this, we want to rep-
b a resent the polarized photon as
leAl( o 2], (16)
-by 0
in— el(¢—x)2
having Yig,l/z sin > e
€1= %g,—uz = 0 , (21
A=a;by—azby, cos5 el(¢txf2
o d, O p
1o dy)’ BV VAT, —cos3 g |(#*x)/2
_ 1/2 _
- . . ) 82—( y L2~ 1/22) = P . (22
and with no loss in generality the orthonormal eigenvectors 12 sin= e (¢~ X2
are 2
a; These are the orthonormal eigenvectors of an optical system
€17 b,/ 17 M. Here a chiral photon is represented relativistically by
two-component spinors which can be split as follows:
epm| (18) v\ (v 0
2 avlr ( + :( +)+ ,
[/ 0 /e

The introduction of a rotator along the path of the light
beam transforms the polarization matfix to M’ by the  where the first and second terms represent the eigenstate of

relation right circular polarization and left circular polarization, re-
spectively.
M’ '=S(w)MS(— w), (19 With the help of Jones calculus, we want to construct the
matrix of the optical system by considering the eigenvalue
whereS(w) is the rotation matri}19], matrix as follows:
COsw —Sinw d, O 1 172 0
S(©)={ sinw  cosw ) (20 D=lpo dz) =T MT:( 0 _1/2), (23)
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yvhich identifies the two helicities of polarized photpns. Us- M,= —cosd cosp—sing sin 6 cosy,
ing the above equations, we can calculate the required polar-
Ization matrix as M ,=sind cosp cosy—sing cosd—i sind siny,
sinf el(¢—x)/2 —cosf e i(¢+x)/2 M 2,=sinf cosp cosy—sing cosd+i sind siny,
2 2
M=TDT !'=

cosg (640012 sing (6012 M 2,=siné sing cosy+ cosy cosp. (30
It seems that the geometrical surface developed by the
1/2 0 polarization matrixM'’ is parametrized by three variablés
0 -1/2 ¢, andy known as Euler angles. These type of single-gadget
matricesM ' belong to the S(2) group. They have generated
sinl emi6—vz  cosl e-iterr particular interest in the polarization optics as studied by
2 Simon and Mukund#&9] as well as others. The usual polar-
ization matrix (2<2) developed by the parametetsand ¢
lies on the PoincarsphereS?, which is the spatial represen-
tation of the Mullar matrix representing the operation of op-
) . tical activity in O3. Thus matrixM’ represented by Eq31)
_1[—co® singe ¥ (249 Will belong to the extended Poincasphere where the addi-
2 | singe'x coy tional parametely represents the angle which measures the
anisotropyu through the relationu=i /6. Our previous
It can be verified that the above polarization matrix satisfiegliscussiongSec. 1) suggest that this variation of angjeis
also associated with the change of direction of helicity of the
Me,=1/2¢,, (25) poIarized_ photon.. It can_be realized from HE) that u as
well asy is associated with a change of angular momentum.
We can thus add here that a change of polarization of light is
Meo=—1/2s5, (26) in connection with the change of angfevhich is associated
with a transfer of angular momentum between the optical
where eigenvalues reflect the helicity of polarized photons. system and the incident light. This idea supports the analysis
Rearranging the terms of E(4), the polarization matrix  given by Tiwari[21].

_Cosg ei(¢+X)/2 Slng ei(¢7X)/2

M can have the representation The change of polarization matrix froml to M’ will
result in the emergent light differing from the initial state and
1/1 0 it will satisfy in the quantum-mechanical framework the re-
=7 3%lo 1) lation
( co(/2) sin( 6/2)cog 0/2)e X [y =M"| ). (31)
sin( 6/2)cog 6/2)e'x sir?(6/2) ’

As the plane of polarization of the initial quantum-
(27) mechanical statéy;) (two-component spinoysis made to
rotate over a closed path, then apart from the dynamical
where we can identify the first term as the coherency matriphase there may appear the geometric phase of Berry. With
of natural radiation and the other term defines the cascadatiis idea, the total phase change through the parallel trans-
optical system where a compensator is followed by a polarport of the polarization plane over a closed path becomes
izer [20]. [22]

We now proceed to find the effect of a rotator introduced _
in the optical system such a way that it rotate the plane of (| i)y =€ rat 7o), (32
polarization by an angle/2 about thez axis. Then Eq(19)
helps us to write Herey, is the dynamical phase and is the nontrivial phase

associated with the geometry of the path. This celebrated
M’ =S(p/2)MS(— ¢/2), (28)  geometrical phasey.=—Im $(njdn) originates from the
eigenstate$n) which gives rise the curvature two-form.

To find the geometrical phase in a most simple and gen-
eral way, we have chosen a poiBt on the closed path,
which is developed by the rotator of rotational angl& at
fixed 6.

Let us first imagine the passage of circularly polarized
M/ light through a rotator. Then the polarization matrix and the

}2)_ (29)  state will belong to either of the two poles. It can be easily
M2, realized that rotation over a closed path will not trace any

closed curve except the pole point. Yet in connection with
It has been found after calculation that the physical rotation of the angtg/2, we have the following

which can be evaluated using EQ4),

—cos¥ singe X

M’= singe'x  cow

1 (cos( @12)  —sin( ¢/2))
T2

sin(¢$/2)  coq ¢/2)

cog ¢/2)  sin(¢p/2) ) 1
| —sin(¢/2) cod $/2)

’

I\/lll
'

M21

2




56 POLARIZATION MATRIX AND GEOMETRIC PHASE 1133

state and the matrices representing the coordinates of thehe required phase becomes
points A(0,0) andB(0,¢) on the upper pole a#=0:

1
1/-1 0 A
MA=> ( 0 1) (33) (Wl ra) = 7 cosp. (40)

and It can be noted that the pathBA does not enclose any
) area. The appearance of the geometric phase is possible dur-

cosp  —sing (34  ing the cyclic evolution if there is curvature associated with
—sing  cosp the closed path. Over an angke the phase 1/4 acquired by
both the left or right circularly polarized light2will be off
only the dynamical origin.

At the end, we shall consider the passage of linearly po-
, (350 larized light through a rotator rotated by an angi2. On an

equitorial circle the value of pointd andB are, respectively,

and from|g,) =M AM4| ) we can find the total phase over (7/2,0) and @r/2,¢). The corresponding matrices at those

M

1
2

W~

with

0
| )= ( eix’2

the pathABA, which is points and the initial states are
N 1/0 ex
<l//A| IJIA>_ Z CO%. (36) MA:E ei)( 0 ’ (41)
In similar manner at the lower pole &t 7 apart, the coor-
dinates ofA andB are(,0) and(7,¢), for which the respec- M — 1 —sing cosy Ccosp cosy—i siny
tive matrices are B™ 2 | cosp cosy+i siny sing cosy '
42
M = 1/1 0) 37 42
A__ _ [}
210 1 and
, l[cosp sing
MB_E sing  —cosp)" (38 1 (e ix2
| )= ARk (43
having
)= e X2 (39 The phase developed by incident polarized light after a rota-
Yn) = 0 tion of angle®/2 becomes,

e ix
ex 0

1 . .
IEV _ = (aix2 —ix/2 .
(alMaMeltrn) = g (€% €7%) cosp cosy+i siny sing cosy e'x’2 “4)

—sing cosy COSp COSy—i Sinx) ei(x)/z)

Through proper matrix multiplication and after simplifing, dynamical phase 1/4, for the passage of two opposite circu-

we can find the result larly polarized lights through the rotator. On the other hand,
for the passage of plane-polarized light through a rotator, an
additional phase cosy2appears which is of geometric ori-

1
(dily)= g [cosx(1+cosp)—(1—cosp)]. (45  gin.

Here our required geometric phase for linearly polarized
light will be identified as; cos 2, which is associated with
the extra variabley introduced for helicity of photon. In the light of Jones calculus, we have mathematically
Our above results extends the idea of Jdri€$ where he determined the polarization matrix of the optical system in
pointed out that a rotator does not change the state of polathe relativistic framework. We have chosen the polarized
ization of circularly polarized light, whereas the reversephoton as a two-component spinor where the helicity is de-
thing happens for plane-polarized light. It implies that if ro- picted by the extra variablg. This causes us to parametrize
tation over a closed path produces any change in the plane ofir resultant polarization matrix by three variabtsp, and
polarization, the inclination of helicityy) will change and x that lie on the extended Poincasphere.
the developed phase will be of geometrical origin. This idea In fact, we have shown finally that circularly polarized
is visualized in our present work through the appearance dfght possesses no geometrical ph&S®@), only a dynamical

IV. DISCUSSION
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phase(DP) after passage through rotator, whereas passage §23]. These findings are consistent with our results as shown
plane polarized light able to produce a GP as well as a Dere.
over the closed path. This study supports the idea of Jones
[17] where appearance of a GP ensures the change of plane
of polarization over a closed path. ACKNOWLEDGMENTS
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